Expert mode: CLI tools#
Most Annolid users work in the GUI (annolid). The CLI is useful when you want to automate conversions, run batch processing, or integrate Annolid into a pipeline.
The annolid command (GUI entry point)#
annolid launches the GUI, but it also accepts a few helpful CLI flags:
Print version:
annolid --versionLoad custom label list:
annolid --labels labels.txt(or--labels "mouse_1,mouse_2")Enable event flags:
annolid --flags flags.txt(or--flags "rearing,grooming")Use a specific config:
annolid --config ~/.labelmercAuto-save annotations:
annolid --autosave
Run annolid --help to see the full list.
Batch utilities (run as Python modules)#
Annolid also ships “utility” modules you can run with python -m ....
Convert LabelMe JSON → CSV#
Export per-frame segmentation/keypoint annotations into a single tracking-style CSV:
python -m annolid.annotation.labelme2csv --json_folder /path/to/video_results_folder
Convert LabelMe JSON → YOLO dataset#
Create a YOLO dataset (images + labels + data.yaml) from LabelMe JSON files:
python -m annolid.main --labelme2yolo /path/to/labelme_json_folder --val_size 0.1 --test_size 0.1
Behavior time budgets from event exports#
If you export behavior events from the GUI, compute a “time budget” summary:
python -m annolid.behavior.time_budget /path/to/exported_events.csv -o time_budget.csv --bin-size 60
If you use a project schema (categories/modifiers), pass it with --schema.